Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor

نویسندگان

  • Manoranjan Sahu
  • Pratim Biswas
چکیده

Synthesis and characterization of long wavelength visible-light absorption Cu-doped TiO2 nanomaterials with well-controlled properties such as size, composition, morphology, and crystal phase have been demonstrated in a single-step flame aerosol reactor. This has been feasible by a detailed understanding of the formation and growth of nanoparticles in the high-temperature flame region. The important process parameters controlled were: molar feed ratios of precursors, temperature, and residence time in the high-temperature flame region. The ability to vary the crystal phase of the doped nanomaterials while keeping the primary particle size constant has been demonstrated. Results indicate that increasing the copper dopant concentration promotes an anatase to rutile phase transformation, decreased crystalline nature and primary particle size, and better suspension stability. Annealing the Cu-doped TiO2 nanoparticles increased the crystalline nature and changed the morphology from spherical to hexagonal structure. Measurements indicate a band gap narrowing by 0.8 eV (2.51 eV) was achieved at 15-wt.% copper dopant concentration compared to pristine TiO2 (3.31 eV) synthesized under the same flame conditions. The change in the crystal phase, size, and band gap is attributed to replacement of titanium atoms by copper atoms in the TiO2 crystal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flame Synthesis and Coating of Nanostructured Particles in One Step

A novel process was developed for direct synthesis and in situ coating of flame-made nanostructured particles in one step. Rutile TiO2 particles made by flame spray pyrolysis (FSP) were coated in a single step with SiO2 layers in an enclosed flame reactor. This in situ particle coating was accomplished by a hollow ring delivering hexamethyldisiloxane (HMDSO) vapor (precursor to SiO2) through mu...

متن کامل

In situ surface hydrogenation synthesis of Ti3+ self-doped TiO2 with enhanced visible light photoactivity.

A novel one-step, vapor-fed aerosol flame synthetic process (VAFS) has been developed to prepare Ti(3+) self-doped titanium dioxide (TiO2). The freshly formed TiO2 was in situ surface hydrogenated during the condensation stage by introducing H2 above the flame, and Ti(3+) ions were created near the surface of TiO2. The relative content of Ti(3+) ions near the surface of TiO2 is estimated to be ...

متن کامل

Synthesis of CuO nanorods via thermal decomposition of copper-dipicolinic acid complex

Template-free CuO nanorods were synthesized through a three-step chemical method with no water-insoluble materials. The first step included the preparation of a Cu-complex, which was obtained from dipicolinic acid, L-lysine, and copper nitrate. Then, as the second step, the obtained solution was allowed to be relaxed for a week to and formation of some blue single-crystals single crystals, whic...

متن کامل

Structural and Optical Behavior of Cu Doped Au Nanoparticles Synthesized by Wet-Chemical Method

The nanoparticles of gold doped with various percentage of copper (Cu 10%, 25%, 75%) were synthesized by wet-chemical method at room temperature. Copper (II) sulfate and gold (III) chloride trihydride was taken as the metal precursor and ascorbic acid as a reducing agent and anhydride maleic as surfactant. The reaction is performed with high-speed stirring at room temperature under nitrogen atm...

متن کامل

Structural and Optical Behavior of Cu Doped Au Nanoparticles Synthesized by Wet-Chemical Method

The nanoparticles of gold doped with various percentage of copper (Cu 10%, 25%, 75%) were synthesized by wet-chemical method at room temperature. Copper (II) sulfate and gold (III) chloride trihydride was taken as the metal precursor and ascorbic acid as a reducing agent and anhydride maleic as surfactant. The reaction is performed with high-speed stirring at room temperature under nitrogen atm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011